
1. daisy:268 (Plakosh, Daniel)

Runtime Analysis Tools
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005 Pearson Education, Inc.

2005-09-27

Runtime analysis tools that detect memory violations are helpful in eliminating memory-related defects
that can lead to heap-based vulnerabilities. To be effective, the tools must be used with a test suite that
evaluates failure modes as well as planned user scenarios.

Development Context

Dynamic memory management.

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc(), calloc(), and free()
[ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer
overflow in the heap, writing to already freed memory, and freeing the same memory multiple times
(e.g. double-free vulnerabilities).

Description

Runtime analysis tools that can detect memory violations are extremely helpful in eliminating
memory-related defects that can lead to heap-based vulnerabilities. To be effective, the tools must be
used with a test suite that evaluates failure modes as well as planned user scenarios.

BoundsChecker
Compuware’s BoundsChecker is a run-time error detection and debugging tool for C++ developers.
BoundsChecker provides feature such as deadlock detection, COM and .NET call reporting, memory
and resource viewers and garbage collection notification.

Purify

Runtime Analysis Tools 1
ID: 311 | Version: 2 | Date: 3/28/06 11:58:18 AM

daisy:268

Two runtime analysis tools are Purify and PurifyPlus from IBM (formerly Rational). Purify performs
memory corruption and memory leak detection functions and is available for both Windows and Linux
platforms [IBM 04]. It detects when a program reads or writes freed memory or frees non-heap or
unallocated memory and identifies writes beyond the bounds of an array.

Dmalloc Library
The debug memory allocation library (dmalloc) replaces the system’s malloc(), realloc(),
calloc(), free(), and other memory management functions to provide configurable, runtime debug
facilities. These facilities include memory-leak tracking, fence-post write detection, file/line number
reporting, and general logging of statistics [Watson 04].

The dmalloc library replaces the heap library calls normally found in system libraries with its own
versions. When you make a call to malloc(), for example, you are calling dmalloc’s version of the
memory allocation function. When you allocate memory with these functions, the dmalloc library
maintains debug information about your pointer, including where it was allocated, how much memory
was requested, and when the call was made. This information can be verified when the pointer is freed
or reallocated. The dmalloc library makes sure the pointer has not been corrupted when you reallocate or
free a memory address.

Electric Fence
Electric Fence can detect buffer overflows or unallocated memory references. Electric Fence implements
guard pages, using the virtual memory hardware of your computer to place an inaccessible memory page
immediately after (or before, as the user defines) each memory allocation. When software reads or
writes this inaccessible page, the hardware issues a segmentation fault, stopping the program at the
offending instruction and thus making it easy to find the erroneous statement with your favorite
debugger. In a similar manner, memory that has been released by free() is made inaccessible, and any
code that touches it will get a segmentation fault.

Gnu Checker
Checker finds memory errors at runtime and warns you when the program reads an uninitialized variable
or memory area or accesses an unallocated memory area [FSF 04].

The malloc library of Checker is a robust but slower version of malloc. Checker issues warnings when
free() or realloc() is called with a pointer that does not reference a valid memory chunk,
including chunks that have already been freed. Checker’s malloc refrains from reusing a freed block
immediately to catch accesses to the block shortly after it has been freed.

Checker implements a garbage detector that can be called by your program as it runs (e.g., by a
debugger such as GDB) or when you exit it. The garbage detector displays all the memory leaks along
with the functions that called malloc.

Valgrind
Valgrind allows you to profile and debug Linux/IA-32 executables [Valgrind 04]. The system consists of
a core, which provides a synthetic IA-32 CPU in software, and a series of tools, each of which performs
a debugging, profiling, or similar task. The architecture is modular so that new tools can be created
easily and without disturbing the existing structure.

Valgrind is closely tied to details of the CPU, operating system, and (to a lesser extent) the compiler and
basic C libraries. Valgrind is available on several Linux platforms and is licensed under the GNU

Runtime Analysis Tools 2
ID: 311 | Version: 2 | Date: 3/28/06 11:58:18 AM

General Public License, version 2.

Insure++
Parasoft Insure++ is an automated runtime application testing tool that detects elusive errors such as
memory corruption, memory leaks, memory allocation errors, variable initialization errors, variable
definition conflicts, pointer errors, library errors, I/O errors, and logic errors [Parasoft 04].

During compilation, Insure++ reads and analyzes the source code to insert tests and analysis functions
around each line. Insure++ builds a database of all program elements. In particular, Insure++ checks for
the following categories of dynamic memory issues:

• reading from or writing to freed memory

• passing dangling pointers as arguments to functions or returning them from functions

• freeing the same memory chunk multiple times

• attempting to free statically allocated memory

• freeing stack memory (local variables)

• passing a pointer to free() that doesn’t point to the beginning of a memory block

• calls to free with NULL or uninitialized pointers

• passing arguments of the wrong data type to malloc(), calloc(), realloc(), or free()

Application Verifier
Application Verifier helps you discover compatibility issues common to application code for Windows
platforms and also additional feature to help identify security, memory and locking issues. The Page
Heap utility (which used to be distributed with the Windows Application Compatibility Toolkit) is
incorporated into Application Verifier’s Detect Heap Corruptions test. It focuses on corruptions versus
leaks and finds almost any detectable heap-related bug.

One advantage of Application Verifier’s page heap test is that many errors can be detected as they occur.
For example, an off-by-one byte error at the end of a dynamically allocated buffer might cause an instant
access violation. For error categories that cannot be detected instantly, the error report is delayed until
the block is freed.

References

[ISO/IEC 99] ISO/IEC. ISO/IEC 9899 Second edition
1999-12-01 Programming Languages — C.
International Organization for Standardization,
1999.

[IBM 04] IBM. Rational PurifyPlus.
http://www-306.ibm.com/software/awdtools/purifyplus
(2004).

[Watson 04] Watson, Gray. Dmalloc — Debug Malloc Library.
http://dmalloc.com (2004).

[FSF 04] Free Software Foundation. Checker.

Runtime Analysis Tools 3
ID: 311 | Version: 2 | Date: 3/28/06 11:58:18 AM

http://www.gnu.org/software/checker/checker.html
(2004).

[Valgrind 04] Valgrind. Valgrind Latest News.
http://valgrind.kde.org (2004).

[Parasoft 04] Parasoft. Automating C/C++ Application Testing
with Parasoft Insure++ (Insure++ Technical
Papers).
http://www.parasoft.com/jsp/smallbusiness/tool_description.jsp?product=Insure
(2004).

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

Fields

Name Value

Copyright Holder Pearson Education

Fields

Name Value

is-content-area-overview false

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Runtime Analysis Tools 4
ID: 311 | Version: 2 | Date: 3/28/06 11:58:18 AM

